Anterior chamber associated immune deviation used as a neuroprotective strategy in rats with spinal cord injury
نویسندگان
چکیده
The inflammatory response is probably one of the main destructive events occurring after spinal cord injury (SCI). Its progression depends mostly on the autoimmune response developed against neural constituents. Therefore, modulation or inhibition of this self-reactive reaction could help to reduce tissue destruction. Anterior chamber associated immune deviation (ACAID) is a phenomenon that induces immune-tolerance to antigens injected into the eye´s anterior chamber, provoking the reduction of such immune response. In the light of this notion, induction of ACAID to neural constituents could be used as a potential prophylactic therapy to promote neuroprotection. In order to evaluate this approach, three experiments were performed. In the first one, the capability to induce ACAID of the spinal cord extract (SCE) and the myelin basic protein (MBP) was evaluated. Using the delayed type hypersensibility assay (DTH) we demonstrated that both, SCE and MBP were capable of inducing ACAID. In the second experiment we evaluated the effect of SCE-induced ACAID on neurological and morphological recovery after SCI. In the results, there was a significant improvement of motor recovery, nociceptive hypersensitivity and motoneuron survival in rats with SCE-induced ACAID. Moreover, ACAID also up-regulated the expression of genes encoding for anti-inflammatory cytokines and FoxP3 but down-regulated those for pro-inflamatory cytokines. Finally, in the third experiment, the effect of a more simple and practical strategy was evaluated: MBP-induced ACAID, we also found significant neurological and morphological outcomes. In the present study we demonstrate that the induction of ACAID against neural antigens in rats, promotes neuroprotection after SCI.
منابع مشابه
Study of Neuroprotective Effects of Green Tea Antioxidant on Spinal Cord Injury of Rat
Purpose: Recent studies revealed the neuroprotective effects of green tea antioxidant on experimental cerebral ischemia, but these effects on spinal cord injury (SCI) has not yet been studied.Materials and Methods: Rats were randomly divided into three groups of 18 rats each as follows: sham group (laminectomy), control group (SCI) and experimental group (EGCG). Spinal cord samples were taken 2...
متن کاملNeuroprotective effects of atomoxetine against traumatic spinal cord injury in rats
Objective(s):Spinal cord injury (SCI) often causes serious and irreversible neurological deficit leading to disability or impairment of normal physical activity. Atomoxetine, a selective norepinephrine transporter (NET) inhibitor has gained much attention in the field of the neurodevelopmental disorder, but its effect on SCI has not been evaluated. The present study has been undertaken to inves...
متن کاملEffects of Biodegradable Polymers on the Rat's Damaged Spinal Cord Neural Membranes
The overall goal of this study was to identify the appropriate biomaterials able to facilitate the regeneration in rat's injured adult spinal cord. Acute damage to axons is manifested as a breach in their membranes, ionexchange distortion across the compromised region, local depolarization and even conduction block. It would be of particular importance to interrupt the progress of events h...
متن کاملMicroglial Activation in Rat Experimental Spinal Cord Injury Model
Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...
متن کاملEffect of chondroitinase ABC on inflammatory and oxidative response following spinal cord injury
Objective(s): Chondroitinase ABC (cABC) treatment improves functional recovery following spinal cord injury (SCI) through degrading inhibitory molecules to axon growth. However, cABC involvement in other pathological processes contributing to SCI remains to be investigated. Here, we studied the effect of cABC I on oxidative stress and inflammation developed in a rat model of SCI.Materials and M...
متن کامل